skip to main content


Search for: All records

Creators/Authors contains: "Lin, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This work presents a new variation on electrostatic clutches that uses gecko‐inspired adhesives instead of friction for its braking force. As a result, it requires no power or normal pressure to remain engaged or disengaged. It requires only a brief pulse of voltage to switch states. In some applications, this capability is desirable for safety reasons. As an illustration, the clutch is incorporated into the needle‐driving axis of a magnetic resonance compatible teleoperated robotic system. Adding the clutch has no effect on imaging quality and provides a fail‐safe brake to prevent the needle axis from dropping in the event of a power failure. As a second application, the clutch is integrated into a force‐controlled robotic gripper where it allows the motor to be turned off while maintaining a static grasping force. In both applications, the 20 ms response time of the clutch prototypes is advantageous to prevent any motion immediately after receiving a braking command. This work additionally presents details on the design and manufacturing process of the gecko‐inspired clutch, including a new, non‐uniform profile for the microscopic adhesive features. The fabricated prototypes are thin (305 µm per layer) and flexible. They provide a controllable, adhesive braking force of 60 kPa per layer. Multiple layers can be assembled to increase the braking force.

     
    more » « less
  2. Alarm signal propagation through ant colonies provides an empirically tractable context for analysing information flow through a natural system, with useful insights for network dynamics in other social animals. Here, we develop a methodological approach to track alarm spread within a group of harvester ants, Pogonomyrmex californicus . We initially alarmed three ants and tracked subsequent signal transmission through the colony. Because there was no actual standing threat, the false alarm allowed us to assess amplification and adaptive damping of the collective alarm response. We trained a random forest regression model to quantify alarm behaviour of individual workers from multiple movement features. Our approach translates subjective categorical alarm scores into a reliable, continuous variable. We combined these assessments with automatically tracked proximity data to construct an alarm propagation network. This method enables analyses of spatio-temporal patterns in alarm signal propagation in a group of ants and provides an opportunity to integrate individual and collective alarm response. Using this system, alarm propagation can be manipulated and assessed to ask and answer a wide range of questions related to information and misinformation flow in social networks. 
    more » « less
  3. Abstract

    A ratiometric genetically encoded voltage indicator (GEVI) would be desirable for tracking transmembrane voltage changes in the presence of sample motion. We performed combinatorial multi-site mutagenesis on a cyan-excitable red fluorescent protein to create the bright and monomeric mCyRFP3, which proved to be uniquely non-perturbing when fused to the GEVI ASAP3. The green/red ratio from ASAP3-mCyRFP3 (ASAP3-R3) reported voltage while correcting for motion artifacts, allowing the visualization of membrane voltage changes in contracting cardiomyocytes and throughout the cell cycle of motile cells.

     
    more » « less
  4. null (Ed.)
  5. Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision. 
    more » « less